
XI-1

RESEARCH OF MODERN NOSQL DATABASES TO SIMPLIFY

THE PROCESS OF THEIR DESIGN

Volodymyr Lysechko1

volodymyr.lysechko@gmail.com
Illia Syvolovskyi1

ilyasvl95@gmail.com
Bohdan Shevchenko1

shevchenkobn@gmail.com
Alla Nikitska2

nikaalla91@gmail.com
Galina Cherneva3

cherneva@vtu.bg

1Ukrainian State University of Railway Transport, Kharkiv, Feuerbach Square 7,
UKRAINE

2Military serviceman, military base A5617, UKRAINE
3Todor Kableshkov University of Transport, Sofia, Geo Milev Str. 158, BULGARIA

Keywords: database, experimental research, DBMS, NoSQL, performance testing,

MongoDB, Neo4j.
Abstract: The amount of data on the Internet is growing at a tremendous rate, as users

add thousands of gigabytes of data to social networks every second. It is not surprising that
relational databases cannot cope with such modern arrays of information, even though they
have been successfully dealing with data processing tasks for several decades. This problem
has led to the need to introduce new approaches of data storing and processing in large
systems. NoSQL databases coped with this task, as they allowed replacing expensive vertical
scaling with efficient horizontal scaling. They also had better performance, a more flexible
data model, and open-source code.

However, without unified approaches to database selection and schema
implementation, application developers make mistakes at the system design stage, which can
lead to additional costs and problems.

Given the urgency of the problem, the paper explores modern NoSQL databases, which
may be the key to improving the overall performance of server systems.

INTRODUCTION
The world is currently experiencing an "information explosion". In the previous five

years, humanity has produced more information than in the previous history. Relational
databases, which have been used for more than 40 years in projects of various profiles, can no
longer cope with such data flows. This is also reinforced by the fact that they do not
effectively support the important functionality for big data today: sharding and replication.

Mechanics ISSN 1312-3823 (print)

Transport ISSN 2367-6620 (online)

Communications volume 21, issue 2, 2023

Academic journal http://www.mtc-aj.com article № 2363

XI-2

Therefore, in the current situation, non-relational NoSQL databases are increasingly being
used to effectively store unstructured and poorly structured data.

The rapid and widespread use of NoSQL databases is due to the ease of their
development at any scale, the functionality and performance of these databases. NoSQL
databases are conveniently used for many modern applications that aim to use scalable
databases that have high performance, wide functionality, and the ability to provide maximum
usability. These are mobile, gaming, Internet applications, etc.

THE MAIN PART
The research found that the main advantages of NoSQL databases are:
- lack of a clear scheme and flexibility, which leads to faster development and

provides opportunities for phased implementation of projects;
- scalability: NoSQL databases do not need to be installed on expensive, reliable

servers, as they are designed to scale using distributed clusters. Also, all cloud service
providers implement such operations in the background to provide a fully managed service;

- high performance: unlike relational databases, NoSQL databases allow for higher
performance because they are optimized for specific access patterns and data models;

- wide functionality: NoSQL databases provide APIs that have wide functionality and
are specially designed for the respective data models. Depending on the data model, NoSQL
databases are divided into several types.

The main types of NoSQL databases include the following:
- key/value databases: they have the ability to store data in any format by a specific

key. They provide high distributivity and support unprecedented horizontal scaling, which is
unattainable with other types of databases. These databases are most often found in projects
with a high read load. That's why they require caching of information blocks. Examples of
such databases are: Redis, Amazon DynamoDB;

- are document-oriented; they are databases that allow developers to store and query
data in the database using the same document model they used in the program code. Each
stored record looks like a separate document with its own set of fields. Documents are
characterized by flexibility and hierarchy, which allows them to evolve in response to the
growing needs of applications. MongoDB, CouchDB, and Couchbase are all examples of the
most common document databases. They aim to provide functional and intuitive APIs for
agile development;

- graph databases are databases in which the data representation is realized in the form
of nodes and edges, which are relations between nodes. Such databases provide easy
processing of complex data and calculation of specific properties of graphs, such as the path
from one node to another and its length. Typical examples of graph databases include social
networks and services;

- columnar (column-oriented) databases; these are databases where data is stored in the
form of cells that are grouped not in rows of data, as in relational databases, but in columns.
These columns are logically grouped into families that have an almost unlimited number of
columns. Columns, not rows, are used for reading and writing. Such databases are usually
used to store and process analytical information. Google BigTable is an example of the first
columnar DBMS. Nowadays, modern columnar databases include: Cassandra, HBase, and
ClickHouse.

At the moment, the most popular NoSQL databases are document databases, in
particular MongoDB, which is rapidly catching up with popular relational databases:
Microsoft SQL Server, Oracle, MySQL, and PostgreSQL [1].

When designing databases, it is necessary to create a database schema and determine
the necessary integrity constraints. The main tasks of database design include the following:

XI-3

a) ensuring that all necessary information is stored in the database;
b) reducing duplication and redundancy of data;
c) ensuring the possibility of obtaining information on all necessary requests;
d) ensuring data integrity, i.e., eliminating data loss and contradictions.
Database design includes four main stages.
Conceptual design is the process of creating a conceptual (semantic) model of a subject

area that does not rely on a DBMS or an existing data model.
The conceptual model should contain:
- description of the information objects of the system and the relationships that arise

between them;
- description of integrity constraints, i.e., requirements for acceptable data values and

relationships that arise between them, and so on.
To implement this stage of database design, a textual description and free-form

notations similar to the UML object diagram are usually used. If the subject area model is not
very complex or large, this stage can be skipped.

The next stage of database design is infological design. This is the process of creating
an ER model of the subject area. The model can be either in the form of a diagram or in text
form. The model includes: entities, their attributes and keys (primary), relationships between
entities and their cardinality.

The artifact of this stage is an ER diagram in Chen's [2], Barker's, Crow's Foot [3], or
IDEF1X notation.

Logical or datalogical design is the creation of a specific logical data model, namely, a
relational, document, or graph model, but without taking into account the specifics of a
particular DBMS. Often the purpose of this stage is to create a database schema. As for the
relational database model, it is a set of relationships with the primary keys and their
relationships, the graph model is a set of nodes, links and their attributes, and so on.

Physical design is the process of creating a physical database model for a particular
DBMS. That is, at this stage of design, you specify the type of data to be supported, create
indexes, manage the physical data storage space, and so on. The result of this design stage is a
diagram and/or a database creation script.

If a database model is relational, it must be normalized according to normal forms [4].
But, in the context of non-relational data models, such as document or graph models, the
opposite transformation is used in practice – denormalization [5].

Denormalization is the process of modifying a database, in which the order of its
normalization is reduced. The need to perform this process is motivated by the need to
improve database performance.

In real-world applications, the number of read operations is usually much higher than
the number of write operations. Also, the entity data for the required operations are often
joined to reduce the number of queries using the JOIN operator in relational DBMSs [6] or its
equivalent in NoSQL databases.

The denormalization process is performed using the following set of rules:
- combining entities with 1:1 relationship;
- duplication of non-key attributes in entities to reduce the number of relationships;
- creation of aggregate entities containing data from other entities.
When designing a database for any NoSQL system, the developer is required to have a

clear understanding of the database operation and the tools offered by the DBMS. Since this
understanding may not be present in practice, many commercial projects are hesitant to switch
to new NoSQL databases because the implementation of such a transition requires a lot of
time for performance modeling and information migration.

XI-4

Also, quite often, developers do not know how to model the schema (entities,
relationships) more efficiently for a particular data model, which data indexes work more
efficiently, etc.

Thus, the study of methods and approaches to logical modeling of NoSQL databases is
relevant today. For further research, the target DBMSs need to be selected.

As for the popular documentary DBMSs that can be used for server applications, they
include the following: MongoDB, DynamoDB, CosmosDB (in document database mode),
Couchbase.

When choosing the optimal database for research, it is advisable to use the following
criteria:

- popularity (or prevalence) of the DBMS - the more popular the DBMS, the more
information about it can be found and the greater the chance that it will be supported
for a longer time. To determine the popularity of a DBMS, we suggest using the db-
engines.com resource;

- license - whether the DBMS is an open-source project or has a commercial license;
- type of DBMS deployment - whether the DBMS is a cloud-only solution or has the

option of deployment in the cloud;
- availability of drivers for different programming languages.
The lack of binding to a particular cloud service is also a great advantage, as it makes

the system architecture more flexible and allows you to build your infrastructure on a separate
server (or set of servers) for any project needs.

From the license point of view, open-source databases have an advantage over
commercial ones due to the openness of the source code. The availability of an optional
enterprise version of the DBMS with additional data protection and backup functionality is a
significant advantage in large projects.

The availability of drivers for many programming languages gives more flexibility in
choosing technologies when building the server side.

Based on these criteria, we can compile a table of the most widespread and relevant
document DBMSs at the moment (Table 1).

Table 1. The most widely used document DBMSs
 Popularity

on db-
engines

License Deployment type Drivers

MongoDB 435.49 Open Source + Enterprise Standalone + Cloud-based 5 / 5
DynamoDB 78.81 Commercial Cloud-based only 2 / 5
CosmosDB 36.49 Commercial Cloud-based only 5 / 5
Couchbase 25.14 Open Source + Enterprise Standalone + Cloud-based 3 / 5

It should be noted that, at the moment, all the presented DBMSs support such important
concepts as:

- support for data sharding;
- support for replication (source-replica, multi-source);
- support for ACID transactions.
When it comes to graph databases, the number of possible DBMS options is quite low.

At the moment, there are the following graph databases: Neo4j, CosmosDB (in graph
database mode), Amazon Neptune, ArangoDB, OrientDB, TigerGraph.

However, it should be noted that only Neo4j, Amazon Neptune and TigerGraph support
a purely graph model, while the rest of the DBMSs are multi-model. Supporting many types
of data models does not guarantee the required performance and functionality of the DBMS.

XI-5

Also, Amazon Neptune is a proprietary database that can only be deployed in the cloud,
which can be an obstacle for many developers. Many of the DBMSs on the list, such as
ArangoDB, OrientDB, and TigerGraph, are still quite new and are still being developed,
making them a risky choice for production solutions. In such a situation, only Neo4j is an
acceptable choice if the server application needs to work quickly with data that can be
represented as a graph.

Now that the databases to investigate have been identified, we should move back to the
database design process. Before the logical design of the database, the infological design
takes place, i.e., the construction of the logical model is based on the ER-diagram. Algorithms
for transition from ER diagrams to logical models in the context of relational databases have
long been formalized. However, these algorithms are not applicable to NoSQL databases,
which are based on data structures other than tables (relationships). But even so, the ways of
modeling the entities and relationships of relational databases can be applied to NoSQL
databases, albeit with amendments and additions [7].

Traditionally, document databases do not provide for relationships in the relational
sense, so the implementation of such functionality and data integrity lies entirely with the
developers of the server (or client, if it is a local database) part that uses the database.

To create functionality similar to relationships, the «Manual reference» method is used,
which involves saving the "_id" field of one document in the field of another object, similar to
the foreign key in relational databases, but without the relationship itself (Fig. 1) [8].

Fig. 1. The method of «Manual reference»

Using this method, a 0:M relationship is formed, which can already be used by

developers as 1:1, 1:M, and derivative relationships. Thus, using an additional query, you can
get another document to which the current one refers. However, this leads to the «N+1»
problem, because it requires an additional query or joining data through a JOIN-like
operation.

To solve such problems, document databases offer the use of compositions in the form
of nested objects or arrays of objects (Fig. 2).

Fig. 2. The method of object composition

XI-6

This approach works well if the relationship between objects can be expressed with the
word «includes». This method can be used to model relationships:

- 1:1, but you need to keep in mind that a nested object will increase the weight of the
document, which slows down its upload from the database to the client;

- 1:M, but if M is not a particularly large number and the nested objects are not very
large.

But, with this approach, you need to remember that:
- the maximum nesting size is 100 levels;
- the maximum size of a document is 16 MB;
- if new records are constantly being added to the document field (array), the

document size will constantly grow. This can cause performance problems because the
document is moved to another memory location because it no longer has room to grow in the
current location (defragmentation).

No relationships also mean no JOIN in the relational sense. But, later, MongoDB added
two ways to join data, namely:

- $lookup - an operation that works similarly to LEFT OUTER JOIN in relational
databases (added in version 3.2);

- $graphLookup - creates a collection of records that show the hierarchy of objects
from some to the current one, similar to searching in graph databases (added in version 3.4).

However, it should be noted that these methods have potentially low performance
because they perform additional queries for the required data. Therefore, in the context of
document databases, composition is a higher priority. But, very often, you cannot do without
this functionality, so you need to create the right index to replace the «COLLSCAN» (full
search) stage with «IXSCAN» (index search). Thus, if we draw an analogy with relational
databases, we turn the slowest type of JOIN (LOOKUP) into a fast MERGE JOIN.

Also, MongoDB has added functionality that has an external resemblance to
relationships - DBRef. However, this functionality is not a relationship, it is an auxiliary
function for client drivers that indicates that a 1:M relationship is possible in this field, so it is
possible to make an additional request to retrieve entities. However, this functionality has a
rather low performance, is not supported by all drivers, and is intended more for "linking"
entities from different collections in a nested array, since the link contains the name of the
collection and, optionally, the name of the database.

The situation with entities that have an M:M relationship is more complicated. It is
known that an M:M relationship can be expressed as two 1:M relationships and an
intermediate object that contains the identifiers of the two referenced objects. This approach
can be implemented in MongoDB without any problems, except for creating indexes on fields
with identifiers. With this approach, all auxiliary attributes of the M:M relationship will be
located in a separate object.

But if the developer needs to join the data of such a relationship, he will have to use two
JOIN-like operations ($lookup), which is very expensive in the context of document
databases.

To solve such a problem, MongoDB almost always uses a different approach:
composing this intermediate object into one of the M:M relationship objects as an array.
Figure 3 shows both approaches: through an auxiliary entity (top) and a shortened approach
with composition (bottom).

The widespread use of the second approach is due to the fact that in 2017, the $lookup
operation received support for using arrays of identifiers as input data for joining data. With
this approach, only one JOIN operation is needed to join data instead of two. But, when using
it, it is necessary to select the "main" object from the M:M relationship, which will contain an
array of identifiers.

XI-7

Fig. 3. Methods of designing M:M communication in document database

In fact, the «Manual reference» method makes the schema more similar to relational

databases, so it can be labeled as a «normalizing» method. The Nested Document method, on
the other hand, reduces the level of normalization through composition, so it can be called
«denormalizing». The aforementioned M:M relationship design method is a «mixed» method,
leaning towards «normalizing» because it uses both concepts but still depends on the JOIN-
like operation.

The next object of research is the methods of logical design for graph DBMSs, in
particular Neo4j. In this DBMS, the database is one big graph without dividing entities by
type (like tables or collections). This graph consists of: vertices (entities) and edges (links).
Unlike document databases, graph databases support relationships, although they differ
significantly from relational relationships.

In Neo4j, each relationship is a special type of entity that stores references to the source
and target entities. Thus, relationships have their own names, can contain attributes, and can
be indexed.

Like all NoSQL databases, this DBMS has no integrity restriction mechanisms, this is
up to the developer to decide at the application level. However, each relationship in the graph
must have an output and an input entity.

It follows that each Neo4j link has a 1:M cardinality by default, which can be
"converted" to a 1:1 link through uniqueness restrictions or at the program level.

Thus, the M:M relationship can potentially be modeled in two ways: through an
auxiliary entity (as in relational databases) and directly, storing additional data as attributes of
the relationship. Figure 4 illustrates these modeling methods graphically: how it looks like in
relational databases (top), through a helper entity (middle), and through relationship attributes
(bottom).

It should be noted that almost all graph DBMSs have only unidirectional relationships.
The standardized query language Gremlin, which is supported by all graph DBMSs, also does
not support bidirectional relationships. Thus, to create a bidirectional relationship, you need to
make two connections in both directions.

Taking into account that a relationship is also one of the DBMS objects, the option with
an intermediate entity is inefficient from the very beginning, because it heavily clogs the
database with unnecessary entities and relationships, increases the weight of the database due
to unnecessary objects, and potentially increases the execution time of even basic queries.

XI-8

Fig. 4. Comparison of methods for designing M:M relationships in graph DBMSs

CONCLUSIONS
As a result of the analysis of modern NoSQL databases, it can be noted that they

provide high efficiency of application to increase the performance of server systems.
As a result of analyzing the field of modern relational and NoSQL databases, it was

found that NoSQL databases are finding more and more widespread every day and in various
tasks. This gives a reason to conduct a deeper study in the field of NoSQL database design.
The most relevant types of NoSQL databases were investigated and the most common
NoSQL DBMSs at the moment were selected. Having analyzed the approaches of modelling
relationships in document and graph databases, it was found that NoSQL databases can also
effectively cope with this task, even with more flexibility. The results obtained are a solid
background for further research.

LITERATURE
[1]. Graph Database. What’s the Big Deal? Towards Data Science. - URL:
https://towardsdatascience.com/graph-databases-whats-the-big-deal-ec310b1bc0ed.
[2]. Halpin T. Entity Relationship modeling from an ORM perspective: Part 1. Object Role
Modeling. - URL: http://www.orm.net/pdf/JCM11.pdf.
[3]. Data, K. Introduction to database systems. / K. Data. - Moscow: Nauka, 1980. - 464 с.
[4]. Teorey T., Lightstone S., Nadeau T. Database Modeling and Design. – Elsevier, 2006. –
296 P. – ISBN 978-0-12-685352-0.
[5]. Wikipedia: Denormalization. - URL: https://en.wikipedia.org/wiki/Denormalization
[6]. Sanders G. L., Shin S. K. Denormalization effects on performance of RDBMS/
Proceedings of the 34th Annual Hawaii International Conference on System Sciences. 2001.9
P.
[7]. Meier A., Kaufmann M. SQL & NoSQL Databases: Models, Languages, Consistency
Options and Architectures for Big Data Management. – Springer Vieweg, 2019. – 248 P. –
ISBN 978-3658245481.
[8]. MongoDB Manual. Data Model Design. - URL:
https://www.mongodb.com/docs/manual/core/data-model-design/#embedded-data-models.

