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 Abstract: Engineering problems are some of the currently most prominent research 
issues. One of the classes of engineering problems are engineering design problems, where a 
set of variables is calibrated for the optimization function to have a minimal or maximal 
value. This function often considers energy efficiency, cost efficiency, production efficiency, 
etc., in engineering design. One of the ways in which such problems are solved is the 
application of metaheuristics. This paper demonstrates how the Beluga Whale Algorithm can 
be used to solve certain optimization problems in mechanical engineering. Firstly, a brief 
review of the Beluga Whale Algorithm, as well as its biological inspiration, is given along 
with the most important formulae. The pseudo code for this algorithm was written using the 
MATLAB R2022a software suite. The Beluga Whale Algorithm was used for the optimization 
of engineering problems, such as: 3D beam optimization, multiple-disk clutch brake and 
cantilever beam optimization. The results presented in this paper show that the Beluga Whale 
Algorithm can produce relevant results in the field of engineering design problems. 
 
 

INTRODUCTION 
 
In the scientific field of algorithms and optimization, there is a class of problems, 

called NP-hard problems. The solutions to these are very hard to obtain using deterministic 
approaches whilst verifying the value of the solution has low algorithmic complexity. 
Examples of these problems are community detection, traveling salesman problem, maximum 
satisfiability problem, knapsack problem, etc. 

One of the reasons why the problems of this nature are hard to solve is the size of the 
so-called solution space. Given the set of input variables, as well as their possible values, the 
solution represents a set of all possible solutions for the problem in question. NP-hard 
problems possess such a vast solution space that using deterministic methods to search 
through it would consume computer resources and time inefficiently. 

One class of algorithms used to solve NP-hard problems are metaheuristic algorithms. 
This class of algorithm consists of a stochastic component to search through the solution 
space as best as possible in  the amount of time given, and a deterministic component to find 
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the highest possible quality solution given by this stochastic search. The metaheuristic 
algorithms do not guarantee an optimal solution to NP-hard problems, but they do guarantee 
that, within a given time span, they output solutions of substantial quality. 

Metaheuristic algorithms are divided into two categories: s-based and p-based. S-
based (also called single-solution-based metaheuristic algorithms) use a single solution during 
the course of the algorithm, using fine-grained deterministic procedures to improve that 
solution. Advantages of such approach are memory efficiency and fine-grained solution 
improvement, while the disadvantage is lack of breadth in solution space exploration. 
Examples of s-based metaheuristic algorithms are: variable neighborhood search (VNS), 
simmulated annealing (SA), hill climbing (HC), tabu search (TS) etc. On the other hand, p-
based algorithms (also called population-based metaheuristic algorithms) use a pool of 
solutions to explore the solution phase, which ultimately converges to the best solution in the 
pool. What is important to be said is that none of these solutions are improved by a fine-
grained procedure, as it is the case with s-based algorithms. Although they explore the 
solution space better than s-based algorithms, they use more memory. Examples of p-based 
metaheuristic algorithms are: grasshopper optimization (GA), bat optimization (BA), marine 
predator optimization (MPA), etc. 

One class of optimization problems is engineering design problems, where a set of 
variables, along with the corresponding optimization function, determines the design of a 
mechanical part. This design is optimized in regards to certain requirements, such as cost and 
mass. In this paper, the beluga whale optimization (BWO) will be used to solve a set of 
engineering design problems. In Chapter 1, the details of the optimization algorithm will be 
given. In Chapter 2, the set of engineering problems solved will be presented, along with a 
comparison with results of state-of-the-art algorithms for the same problem. In Chapter 3, a 
conclusion will be given. 

 
 
BELUGA WHALE ALGORITHM  

 
Beluga whale optimization algorithm, first proposed in [1], simulates the living habits 

of beluga whales in the ocean. Beluga whales gather in groups from 2 to 25 members, and the 
adult members are of pure white color (figure 1). As almost all metaheuristic algorithms, this 
algorithm contains exploration and exploitation phases. What is characteristic for this 
algorithm is that the transition between exploration and exploitation is smooth, and it is given 
by the formula: 
 

 0 max1 2fB B T T                                                                                             (1) 

 
where t is the current iteration, T is the maximum iteration number, and B0 is a random 
number in the interval (0, 1). When the balance factor Bf > 0.5, it corresponds to the 
exploitation stage. The balance factor Bf ≤ 0.5 corresponds to the exploitation stage. With the 
increasing number of iterations, the probability of the exploitation phase increases, while the 
probability of the exploration phase decreases. 
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Fig.1. Behaviors of beluga whales 

 
Exploration phase is inspired by the synchronous or mirror behaviors of beluga whale 

in swimming or diving. This is reflected in the fact that the movement of the j-th dimension of 
the problem is different and based whether j is even or odd. The formulas for the movement 
of beluga whales in exploration phase is: 
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is the position of the i-th individual on the j-th dimension during the next iteration. P and P 
are randomly selected positive integers in [1, dim], and they are not equal. X , 
and X, represent the position of the i-th and r-th individuals under the current iteration, and r1 
and r2 are random numbers in (0, 1). 

Beluga whales, being social animals which hunt in groups, share information about 
their location with each other, so that they know what is their position relative to the best 
member of the population, as well as other individuals. Assuming that beluga whales can use 
a Lévy flight strategy to capture prey, the specific formula is shown as: 
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X and X represent the current positions of the i and r individuals in the current iteration. X is 
the new position of the i-th individual, X is the best position, and r3 and r4 are random 
numbers in (0, 1). C1 is a random jump, which measures the intensity of the Lévy flight. L is 
a random number consistent with the Lévy distribution, calculated by the following formula: 
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where u and v are random numbers obeying a normal distribution, and β is a constant set to 
1.5. 
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Beluga whales are highly dependent on their group behavior. During their lifetime, 
they either migrate to another group, or risk dying alone. This is modeled in the algorithm by 
updating the position of individuals according to step size of whale fall: 
 

1
5 6 7

T T T
i i r stepX r X r X r X                                                                              (6) 

 
where r5, r6, and r7 are random numbers in (0, 1), and Xstep is the step size of whale fall 
established as: 
 

   2 maxexpstep b bX u l C T T                                                                   (7) 

 
C2 is the step size factor, which is related to the probability of beluga whale fall and 
population size 
(C2 = 2Wf × n). ub and lb are the upper and lower bounds of variables, respectively. The 
probability of a beluga whale fall is calculated as a linear function, and the formula is as 
follows: 
 

max0.1 0.05fW T T                                                                                   (8) 

 
 
OPTIMIZATION PROBLEMS AND RESULTS 

 
In this section, each optimization problem is described in detail, namely: fitness or 

goal function, the practical basis for the problem, which parameter it is consisted of, and 
which conditions are required of the variables. Every step of this process was done using the 
MATLAB R2022a software suite. In each example, the fitness function is denoted by f(x), 
while the i-th constraint is represented by gi(x). 

Second problem consists of minimizing cross�section heights of all elements of a 
cantilever beam, which is shown in Figure 2. A vertical shift of point A is defined in advance, 
having a specified upper limit. The beam is under continual load (q1, q2) on horizontal parts of 
the beam, as well as horizontal force F, which affects the vertical part of the beam.   
 
Goal function to be minimized is defined as:    

 
                        (9) 

 
  
Whilst the conditions to be met are:  
 

 
 

                                                                                  (10) 
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Fig. 2. 3D beam design problem 
 

The objectives of the problem are to minimize the mass of the brake. The disc brake 
optimization model has four variables (as shown in Figure 3) that are inner radius of the discs 
(x1), outer radius of the discs (x2), engaging force (x3) and number of the friction surfaces (x4). 
 

 
 

Fig. 3. Multiple-disk clutch brake design problem 

The objective functions and constraints of the disc brake design optimization are defined as 
follows:                
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 Cantilever beam (Figure 4) is an important element in mechanical engineering, whose 
design is to be handled with utmost care. Minimization of the said beam’s weight represents 
the main goal in design. The lengths of the five bearings are this problem’s variables. 

 
 

Fig. 4. Cantilever beam 
 

The mathematical formulation constraints of this problem are described in Eqs. (18)  
to (19) : 
 

   1 2 3 4 50,6224 ,f x x x x x x    
(18) 

  3 3 3 3 3
1 2 3 4 5

61 27 19 7 1
1 0,g x

x x x x x
      

    (19) 
 

The considered variable ranges are described in Eq (20). 
 

1 2 3 4 50,01 , , , , 100,x x x x x                                 (20)    

 
As the results show, BWO has shown results that are better than current literature. 

In Table 1, a comparison of results for design of a 3D beam optimization problem are shown. 
 

Table 1. Comparison of results for the first example (3D beam) 
 

Variables ANSYS [2] GOA [3]  BWO 
x1 0,804 0,804 0,793 
x2 0,569 0,569 0,595 
x3 0,345 0,345 0,332 

      f(x)          1,461       1,409    1,495 
 

In Table 2, a comparison of results for design of a cantilever beam optimization 
problem are shown. In this case, the BWO gives a result comparable to ones described in 
papers [2] and [3]. ANSYS/Design Optimization-Subproblem Approximation Method gives a 
better result, yet it violates the condition g1<0.05. 
 

A detailed display of the results obtained by BWA and a comparison with several 
results obtained by other methods, for the problem of disk brake, are shown in Table 2. 
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Table 2. Comparison of results for the second example (disk brake) 

Variables PSA [4] GA [5]  BWO 
x1 62,600 65,800 55,000 
x2 83,500 86,100 75,000 
x3 2920,900 2982,400 1000,000 
x4 

f(x) 
11,000 
1,790 

10,000 
1,660 

2,000 
0,127 

 

In the case of this problem, BWO has given better results than GA and PSA. 

In the case of the cantilever beam design problem, the results are presented in Table 3. 
The results from literature, where the ALO and MMA methods are used for this problem, are 
to be found in the same table. 
 

Table 3. Comparison of results for the third example (cantilever beam) 
 

Variables ALO [6] MMA [7]  BWO 
x1 6,018 6,010 6,297 
x2 5,311 5,300 4,599 
x3 4,488 4,490 4,538 
x4 

x5 

f(x) 

3,497 
2,158 
1,339 

3,490 
2,150 
1,340 

3,476 
2,047 
1,308 

 
As can be seen from the results, the BWO gives near optimal results, close to the 

MMA and ALO methods. 
 

 
CONCLUSION 

 
This paper describes the BWO algorithm, and applies it to a selected set of 

engineering problems. This set is comprised of: cantilever beam, 3D beams and multiple-disk 
clutch brake design problems, which are described in detail, and highlighted by figures, goal 
function and constraints’ descriptions. 
The input parameters that were chosen are 50 search agents and 1000 iterations of the 
algorithm. The reason for this is that, as was discovered during the research, increasing the 
values of these input parameters did not yield better solutions. 

In case of multiple-disk clutch brake, the BWO gives better results than the methods 
to which it was compared. In the case of the other two optimization problems, namely: 
cantilever beam and 3D beam the BWO yielded near optimal solutions. 
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