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Abstract: This paper presents theoretical and experimental analysis of wave 

phenomena at impact of waggons. Theoretical considerations have been realized on 
an idealized beam model, and experimental results refer to test of waggon Zagkks for 
transport of liquid petroleum gas. 

1. BEHAVIOUR OF ELASTIC BODIES AT IMPACT  
At longitudinal impacts, when the structure members are very quickly 

deformed, complex physical phenomena occur, such as: changes of rheological 
properties of the material, temperature and chemical changes, etc. During these 
phenomena, the behaviour of the structure can be completely different from its 
behaviour at static loading. The structure fails in getting displacements which 
correspond to fast changes of loads. Such delay can cause abrupt deformation of the 
structure.  

Fast changes in stresses and strains caused by impact cannot be precisely 
defined without considering wave processes. Therefore, where it is possible, the wave 
character of propagation of deformations is observed in theoretical research of 
behaviour of elastic bodies at impact. However, in railway vehicles, where the 
geometry of the carrying structure is complex, and speeds of impact are not so great, a 
model of elastic body neglecting some phenomena can be formed. In that way, local 
effects which refer to the three-axis stress state is avoided. This postulation defines 
impact by a certain speed of a cross-section of the member or the shell and the ratio 
between masses of the observed elements and load. 

Consideration of impact phenomena is, in this way, different from the case 
where the change of several physical factors is present and where changes of the 
structure of the material are dominant. Most real structures subjected to impact action 
can be treated in this way.  

In that case, equations of motion [1,2] have the form: 
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where:  
λ, G, ρ  – constants of material, 
εv  –  volume deformation, 
u, v, w  – displacements in x, y and z directions, 
Fx, Fy, Fz – external volume forces, 
t  – time 
∇2  – Laplace operator. 
 

2. PROPAGATION OF WAVES IN ELASTIC CONTINUUM 
Behaviour of an elastic body loaded with forces which do not change in time 

belongs to the field of statics. These problems can include the case where the change 
of load in time is slow, i.e. quasistatic. If changes of load in time are faster, as in the 
case of impact loads, then the problems are transferred to the field of dynamics. Then 
it is necessary to replace the equations of static equilibrium of an elastic body by 
equations of motion. In this case, action of dynamic (impact) load is not immediately 
transmitted to all points of the body. Waves of stresses and strains start to propagate 
from the loaded surface and they have finite speed of propagation. Here, as in the 
familiar case of propagation of sound in the air, a certain point will be incited only 
when a wave reaches it. In an elastic body, there is not only one wave, but several 
types of waves and they have different speeds of propagation.   
 

2.1 Longitudinal and cross waves in isotropic elastic continuum  
If a certain point of the elastic continuum is incited, waves will start to 

propagate from that point to all sides. It can be taken that, at a distance from the centre 
of incitation, all particles will move in parallel with the direction of propagation of 
waves (longitudinal waves) or normally to that direction (cross or transversal waves). 

 
Under the assumption that, in the existence of waves, the volume deformation is 

equal to zero, i.e. that deformation consists of sliding and rotating only, equations (1) 
obtain the form [1, 2]: 
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The previously obtained wave equations represent cross waves. The value c2 is 
the speed of cross waves in the elastic continuum and it is determined by the 
expression: 

(3)      
ρ
Gc2 =                                                                 

The essential difference between solving dynamic and static problems is that 
the boundary conditions should be added by initial conditions, i.e. displacements and 
speeds of points at a certain initial moment of the time to should be defined. 

Let us consider the case when the deformations occurring due to the action of 
waves do not contain rotation. Rotation of an elementary part is determined by the 
equations: 
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On the basis of the condition that deformation should not contain rotation, the 
following can be written: 
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If these conditions are satisfied, displacements u, v and w can be expressed by a 
function ϕ  in the following way: 
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By replacing these equations in the equations of motion, the following is 
obtained: 

2

2
2
12

2

2

2
2 0

x
uc

t
u

t
uu)G(

∂
∂

∂
∂

∂
∂ρλ =⇒=−∇+  

(8)
       2

2
2
12

2

2

2
2 0

y
c

tt
)G(

∂
ν∂

∂
ν∂

∂
ν∂ρνλ =⇒=−∇+  

            
2

2
2
12

2

2

2
2 0

z
wc

t
w

t
ww)G(

∂
∂

∂
∂

∂
∂ρλ =⇒=−∇+  

The waves determined by these equations are called longitudinal waves or 
propagation waves. 

The speed of propagation of longitudinal waves is given by the expression: 
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From the equations (3) and (9), it can be seen that waves in the elastic 
continuum can propagate at two different speeds. In propagation waves, the direction 
of motion of particles coincides with the direction of propagation of waves, while 
cross waves, which occur due to rotating and sliding, propagate normally to that 
direction.   
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Let us first consider longitudinal waves. If the axis x is in the direction of 
propagation of waves, then v=w=0, so that the displacement u is a function of the 
coordinate x. In that case, the wave equation of the system (8) is determined by: 
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Every function f(x+c1t) can be a solution to the previous equation. Also, every 
function f1(x-c1t) is a solution to that equation, so that it is possible to write the general 
solution in the form [3]: 
(11)     u=f(x+c1t)+f1(x-c1t)                                          

This solution has the following physical interpretation. Let us consider the 
second member of the previous equation. At every moment of the time t, that member 
appears with a function of only one variable and can be represented by a curve whose 
shape depends on the function f1. Through the time interval Δt, the argument of the 
function f1 obtains the form x-c1(t+Δt). The value of the function f1 remains unchanged 
if, simultaneously with the increase of the time t by the value Δt, the abscissa is 
increased by the value  Δx=c1Δt. It means that the wave function formed at a point of 
the time t can also be used in the time t+Δt if it is moved along the axis x at the 
distance Δx=c1Δt. The first member of the equation (11) has the same behaviour, but 
this wave propagates in the opposite direction. In that way, the general solution to the 
equation (11) can be represented by two waves moving along the axis x in two 
opposite directions at the constant speed c1. This speed can also be expressed through 
the module of elasticity E and the Poisson’s coefficient ν: 
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Figure 1. Propagation of waves in the elastic continuum 

 
Considering the physical motion of waves given by the function f1(x-c1t), the 

following expression for the speed of particles is obtained: 
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Using the expression for the stress xσ , as well as the expression for the speed 
of particles u  (13), the stress in the direction of propagation of waves is obtained: &

(14)    ucx &1ρσ −=                                                          
If the returning motion of waves represented by the first member in the 

equation (11) f(x+c1t) is observed, the minus sign in the equations (13) and (14) would 
be replaced with the plus sign. 
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The functions f1 and f for each separate case are determined from the initial 
conditions at the moment t=0, where 

(u)t=0=f(x)+f1(x), 
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If the initial speed is equal to zero, and the initial displacement is determined by 
the function: (u)t=0=F(x), the previously mentioned conditions will be fulfilled if 
f(x)=f1(x)=

2
1 F(x). In that case, the initial displacement is divided in two halves 

propagating wavily in two opposite directions. 
 

2.2 Beam at longitudinal impact 
This section presents main dependencies referring to behaviour of beams at 

longitudinal impact. Let us observe the beam with the mass m2 whose one end is 
subjected to the action of impact load originating from the absolutely rigid body with 
the mass m1, which moves with the speed v1 until it meets the beam. The beam at the 
end x=  can be stationary or freely supported and it is in the state of rest, [4, 7, 11, 
24]. 

l

 
Figure 2. Beam at longitudinal impact 

At the beginning of impact, the beam is compressed, so that the initial speed v1 
of the mass m1 is impulsely changed until the speed of displacement of the beam end 
which undergoes the impact tu/u ∂∂=& . This leads to fast occurrence of deformations 

xu/∂∂=ε , that is the stresses εσ ⋅= Ex . 
Let us consider only propagation of waves along the direction of impact, 

neglecting the process of oscillation in the body performing the impact.  
On the basis of the expression (8), the differential equation of displacement of 

the beam along the axis x has the form: 
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where the speed of propagation of waves in the beam is: 
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At the moment of reaching the maximum displacement in the beam umax, the 
mass m1 will be in the state of rest. If the kinetic energy before the impact is Ek,o and 
the maximum potential energy of the system is Ep,max, then, on the basis of the law of 
conservation of energy, it can be written: 
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Here, κ  is the ratio between the mass of load and the mass of the beam. 
If the impact speed v is above a certain limit dependent on mechanical 

properties of the beam, a permanent deformation can occur in it although the mass of 
the impact body is small. 

In the case of propagation of waves in the beam whose end x= is stationary, 
the solution to the equation (16) has the form (11) and must satisfy the following 
conditions: 
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Time is measured from the moment of impact. 
Let us assume that the instrument for registration of displacements and 

deformations, determined by the function f1, moves with the speed c from the free end 
to the supported end. In that case, at the points where the instrument is positioned, we 
shall have that x=ct, f1=const, i.e. indication of the instrument will not change. Hence, 
it follows that the function f1 determines the wave deformation, which propagates 
along the beam in the direction from the point of impact toward the supported end, and 
c is the speed of propagation of the wave front equal to the speed of sound in the 
beam.  

The sense of the function f is the wave reflecting from the stationary end. The 
local speed of the beam particles ( ) and deformations (ε) is determined by 
appropriate derivations: 
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Let us consider the initial period of deformations /ct0 l≤≤ . If f=0 and x=0, the 
equation for determination of displacement of the loaded end is obtained: 
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where t*=ct 
By using the limiting conditions, the following expressions for the speed of 

displacement of the movable end of the beam and for the corresponding deformation 
are obtained: 
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Hence, it follows that at the moment of impact the members of the beginning of 
the beam, which are subjected to impact, obtain the deformation equal to the ratio of 
the local speed of the initial point of the beam and the speed of sound in the beam.  

The displacement of the end point of the beam is determined by the expression: 
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If the mass of the body which performs impact is considerably greater than the 
mass of the beam, it can be considered that ∞=κ , and at the speed v1=const. from the 
equation (22), it follows: 
u(0,t)=v1t 

For the analysis of the time period ll 2ct ≤≤ , it is necessary to determine the 
function f and limiting conditions at the stationary end. In that way, direct integration 
of the equation (16) results in functions whose form is changed upon running out of 
the period which is equal to the period of passing of the elastic wave along the beam. 
In the time period t=2 l /c, the pressure wave returns to the beam beginning, which is 
in contact with the body. The speed of the body cannot be abruptly changed, so that 
the wave will reflect as if from the fixed end, and thus be doubled.  

The characteristic curve of the beam deformation at longitudinal impact has the 
exponential form which decreases in time and after the period 2 /c has a rise. The 
value of the exponent is determined by the ratio between the masses of the body and 
the beam 

l

κ . The length of duration of the contact depends on the speed of members at 
impact v1 and the ratio of masses κ . The contact stops at the moment when 
deformation of the beam beginning is equal to zero, which corresponds to passing 
through the equilibrium state.   

If the other end of the beam is free, instead of the condition u=0 when x= , it 
is necessary to introduce the condition 

l

0xu/ =∂∂ . 
 
3. SPEEDS OF WAGGONS AT IMPACT  
 
The impact of two waggons can be observed as the impact of two beams (Fig. 

3) moving at the speeds v1 and v2 (v1> v2).  

llll
 

Figure 3. Impact of two beams 
 
At the moment of impact, two identical pressure waves start moving along both 

beams. In order to obtain equal absolute speeds of particles of both beams over the 
contiguous surface, the values of those speeds must be equal to (v1- v2)/2. After the 
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time interval l/c, pressure waves reach free ends of the beams. At this moment, both 
beams are in the state of uniform pressure and the absolute speeds of all particles of 
the beams are: 
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Pressure waves will then reflect from the free end, and at the moment 2 /c, 
when these waves reach the contiguous surface of both beams, their speeds become: 

l

(25)     2
2121

22
vvvvv

=
−

−
+   the speed of the first beam 

(26)     1
2121

22
vvvvv

=
−

+
+    the speed of the first beam 

i.e., the beams change their speeds during the impact.  
The previously exposed theory of impact is based on several assumptions, such 

as, it is the impact of two homogeneous beams, the contact occurs over the whole 
surface of the beam, at the same moment, etc. In practice, such a case is rare and that is 
why the results of theoretical and experimental research do not agree. However, the 
knowledge of principles of occurrence and propagation of waves can help us in the 
analysis of experimentally obtained results of tests of real structures.  

 
4. ANALYSIS OF EXPERIMENTAL RESULTS OF IMPACT OF 

WAGGONS  
 
The Centre for Railway Vehicles at the Faculty of Mechanical Engineering in 

Kraljevo performs tests of wagons, where testing of waggons at impact is one of 
obligatory tests.  

During the impact of real waggon structures (Fig. 4), due to the complicated 
carrying structure, it is impossible to use only theory, for the time being, to determine 
precisely all parameters occurring at that. However, theoretical considerations can help 
us in the analysis of experimentally recorded data because the character of the 
phenomenon is the same.  

 

 
Figure 4. Tank-wagon 
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Figure 5. a) a b) clearly shows effects of wavy motion, i.e. the time necessary 
for the wave to pass from the buffer to the end of the waggon and back. The 
experimentally determined time for this is between 21 and 24 ms and it is somewhat 
longer than in the case when two homogeneous members of the same length would be 
at impact. The cause of this “delay” of wave is explained by the non-homogeneous 
structure which is interweaved with elements of different characteristics, then by the 
shape of the contiguous surfaces participating in the impact, etc.  

It can be indirectly concluded that the transducers, which record the impact 
force, have a satisfactory dynamic characteristic because they are able to record a 
phenomena which lasts more than ten times less than the time of impact duration. In 
the transducers which do not have a satisfactory dynamic characteristic, the curve 
would have a continual increase (without rises), and in that case there would appear an 
error in recording the maximum impact force. 

 

a) b) 
 

Figure 5. Change of force at the buffer at impact of wagons 
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